

Требуется рассчитать остаточный ресурс дорожной конструкции, имеющей следующие параметры (таблица 1) и интенсивность движения (таблица 2,3).

Таблица 1 –Параметры автомобильной дороги

Показатели	Значение
Категория автомобильной дороги	Ia
Дорожно-климатическая зона	IV
Местоположение	Ростовская область
Тип дорожной одежды	Капитальный
Расчётная нагрузка	115 кН
Расчётное количество дней в году	205
Срок службы дорожной одежды	18 лет
Количество полос движения	4
Годовой прирост интенсивности движения, %	3

Таблица 2. Среднегодовая суточная интенсивность движения транспортных средств на первый год эксплуатации

Тип транспортного средства	Интенсивность движения, авт/сут
Легковые	27529
Грузовые с грузоподъёмностью до 2 т	717
Грузовые с грузоподъёмностью от 2 до 5 т	1071
Грузовые с грузоподъёмностью от 5 до 8 т	1258
Грузовые с грузоподъёмностью от 8 до 12 т	672
Грузовые с грузоподъёмностью свыше 12 т	3498
Автобусы	288

Таблица 3 — Среднегодовая суточная интенсивность движения транспортных средств на первый год эксплуатации с диферренциированным подходом

Вид транспортного средства	Количество, авт/сут
1. Легковой автомобиль	27529
2.Грузовые автомобили:	
2.1.Легкие (грузоподъёмность 1-2т)	717
2.2.Средние (грузоподъёмность 2-5т)	717
2.3.Тяжелые (грузоподъёмность 5-8т):	
2.3.1	348

2.3.2	379
2.3.3	
3. Автопоезда с полуприцепом:	
3.1	85
3.2	374
3.3	2740
3.4	195
3.5	521
4. Автопоезда с прицепом:	
4.1	184
4.2	51
4.3	482
4.4	69
5.Автобусы	
5.1 (микроавтобусы)	354
5.2	288

Для того, чтобы определить остаточный ресурс дорожной конструкции необходимо вычислить расчетный ресурс дорожной конструкции ($\sum N_p$) — суммарное расчетное число приложений расчетной нагрузки к точке на поверхности за расчетный срок службы (t_{cn}) определяется по формуле 1.

$$\sum N_p = \sum N_p^{\text{пуст}} + \sum N_p^{\text{груж}} + \sum N_p^{\text{перегр}}$$
(1)

- где, $\sum N_p^{\text{пуст}}$ суммарное расчетное число приложений расчетной нагрузки к точке на поверхности конструкции от автотранспортных средств, передвигающихся по автомобильной дороге без груза за весь срок службы;
 - $\sum N_p^{\text{груж}}$ суммарное расчетное число приложений расчетной нагрузки к точке на поверхности конструкции от автотранспортных средств, передвигающихся по автомобильной дороге с грузом за весь срок службы;
 - $\sum N_p^{ ext{neper}}$ суммарное расчетное число приложений расчетной нагрузки к точке на поверхности конструкции от автотранспортных средств, передвигающихся по автомобильной дороге с перегрузом за весь срок службы.

Суммарное расчетное число приложений расчетной нагрузки к точке на поверхности конструкции автотранспортных средств с различной степенью загрузки ($\sum N_p^{\text{пуст}}; \sum N_p^{\text{груж}}; \sum N_p^{\text{перегр}}$) определяется по формуле

$$\sum N_p^j = f_{\text{пол}} \cdot \sum_{m=1}^n (N_{im} \cdot K_c \cdot T_{\text{рдг}} \cdot 0.7) \cdot \mathbf{S}_{m \text{ сум}} \cdot k_n$$
 (2)

где, $f_{\text{пол}}$ — коэффициент учитывающий число полос движения и распределение движения по ним, определяемый по таблице 4;

n - общее число различных марок транспортных средств в составе транспортного потока;

 $S_{m\ cym}$ - суммарный коэффициент приведения воздействия на дорожную одежду транспортного средства і-й марки заданной степени загрузки к расчетной нагрузке Q_{pacv} ,;

 N_{im} - суточная интенсивность движения автомобилей m-й марки заданной степени загрузки в первый год службы (в обоих направлениях), авт/сут;

Kc - коэффициент суммирования, определяют по формуле 3;

 $Tp\partial z$ - расчетное число расчетных дней в году, соответствующих определенному состоянию деформируемости конструкции, (определяемое в соответствии с таблицей 5);

kn - коэффициент, учитывающий вероятность отклонения суммарного движения от среднего ожидаемого, определяемый по таблице 6.

Таблица 4 - Значение коэффициента f_{non}

Число полос	Значение коэффициента f_{non} для полосы с номером от обочины									
движения	1	3								
1	1,00	-	-							
2	0,55	-	-							
3	0,50	0,50	-							
4	0,35	0,20	-							
6	0,30	0,20	0,05							

Примечания

- 1. Порядковый номер полосы считается справа по ходу движения в одном направлении;
- 2. Для расчета обочин принимают $f_{non} = 0.01$;
- 3. На перекрестках и подходах к ним (в местах перестройки потока автомобилей для выполнения левых поворотов и др.) при расчете одежды в пределах всех полос движения следует принимать $f_{non} = 0.50$, если общее число полос проезжей части проектируемой дороги более трех.

 $=\frac{q^{-1}}{q}$ 3 $\frac{3}{q}$ 7 $\frac{7}{q}$ 7 $\frac{7}{q}$ 7 $\frac{7}{q}$ 7 $\frac{7}{q}$ 7 $\frac{7}{q}$ 9 $\frac{7}{q}$

q показат ель

изменения интенсивности движения данного типа автомобиля погодам.

Tаблица 5 - Pекомендуемые значения $T_{p \partial z}$ в зависимости от местоположения дороги

Номера		Рекомендуемое
районов на	Примерные географические границы районов	количество расчётных
карте		дней в году $(T_{p\partial c})$
1	Зона распространения вечномёрзлых грунтов севернее семидесятой	70

Номера районов на карте	Примерные географические границы районов	Рекомендуемое количество расчётных дней в году (T_{pdz})
	параллели	
2	Севернее линии, соединяющей Онегу - Архангельск - Мезень - Нарьян-Мар - шестидесятый меридиан - до побережья Европейской части	145
3	Севернее линии, соединяющей Минск - Смоленск - Калугу - Рязань - Саранск - сорок восьмой меридиан - до линии, соединяющей Онегу - Архангельск - Мезень - Нарьян-Мар	125
4	Севернее линии, соединяющей Львов - Киев - Белгород - Воронеж - Саратов - Самару - Оренбург - шестидесятый меридиан до линии районов 2 и 3	135
5	Севернее линии, соединяющей Ростов-на-Дону - Элисту - Астрахань до линии Львов - Киев - Белгород - Воронеж - Саратов - Самара	145
6	Южнее линии Ростов-на-Дону - Элиста - Астрахань для Европейской части, южнее сорок шестой параллели для остальных территорий	205
7	Восточная и Западная Сибирь, Дальний Восток (кроме Хабаровского и Приморского краев, Камчатской области), ограниченные с севера семидесятой параллелью, с юга сорок шестой параллелью	
8	Хабаровский и Приморский края. Камчатская область	140

Примечания: Значения величины T_{pde} на границах районов следует принимать по наибольшему из значений.

Tаблица 6 - 3начение коэффициента k_n при различных категориях дорог

Тип дорожной	Значение коэффициента k_n при различных категориях дорог										
одежды	I	I II III IV V									
Капитальный	1,49	1,49	1,38	1,31	-						
Облегченный	-	1,47	1,32	1,26	1,06						
Переходный	-	-	1,19	1,16	1,04						

Коэффициент приведения транспортных средств к расчетной нагрузке $S_{m\ cym}$ с учетом скорости движения, массы транспортного средства и ровности покрытия проезжей части определяется по формуле

$$S_{m \text{ CVM}} = b \cdot (c_1^V) \cdot (c_2^M) \tag{4}$$

где, V - скорость транспортного средства, км/ч (20-150 км/ч);

М – общая масса транспортного средства, т;

c₁, c₂, b –эмпирические коэффициенты, зависящие от показателя ровности IRI (таблица 7, 8)

При необходимости определения коэффициентов c_1 , c_2 , b для автомобильных дорог, имеющих показатель ровности по международному индексу IRI, отличный от приведённых в таблицах 7, 8, пользуются методом интерполяции.

Рекомендуется рассчитывать $S_{m\ cym}$ для транспортных средств с тремя степенями загрузки:

• транспортное средство без груза;

- транспортное средство загруженное (≈50-100% от номинальной массы);
- транспортное средство с перегрузом (≈ 115% от груженного TC).

Рекомендуемое соотношение транспортных средств с различной степенью загрузки в транспортном потоке

Транспортные средства со	Транспортные средства с	Транспортные средства с				
снаряженной массой, %	грузом, %	перегрузом, %				
30	60	10				

Tаблица 7 — 3начение коэффициентов c_1 , c_2 , b, при приведении транспортного средства к расчетной нагрузке $115~\mathrm{kH}$

	Значение коэффициентов c_1 , c_2 , b при различном показателе ровности IRI, м/км															
Тип трансп. средства		IRI = 1.8			IRI=3.0			IRI=3.75			IRI=4.5			IRI=6.0		
	c_1	c_2	b	c_1	c_2	b	c_1	c_2	b	c_1	c_2	b	c_1	c_2	b	
	1.0071	1.4571	0.0015	1.0103	1.4488	0.0019	1.0123	1.4438	0.0021	1.0142	1.4388	0.0024	1.0178	1.4295	0.0028	
	1.0067	1.2626	0.0073	1.0108	1.2559	0.0086	1.0133	1.2519	0.0094	1.0159	1.2478	0.0102	1.0205	1.2403	0.0116	
	1.0060	1.2771	0.0028	1.0102	1.2695	0.0034	1.0128	1.2649	0.0037	1.0154	1.2603	0.0041	1.0202	1.2518	0.0047	
	1.0112	1.1911	0.0043	1.0150	1.1834	0.0059	1.0173	1.1787	0.0069	1.0196	1.1740	0.0078	1.0238	1.1653	0.0096	
	1.0071	1.1696	0.0056	1.0118	1.1514	0.0137	1.0147	1.1404	0.0186	1.0175	1.1293	0.0235	1.0228	1.1089	0.0325	
	1.0076	1.1366	0.0169	1.0124	1.1302	0.0197	1.0153	1.1262	0.0214	1.0182	1.1223	0.0231	1.0236	1.1151	0.0263	
	1.0060	1.1145	0.0236	1.0116	1.1044	0.0323	1.0151	1.0982	0.0376	1.0185	1.0920	0.0429	1.0248	1.0806	0.0527	
	1.0095	1.1694	0.0066	1.0121	1.1580	0.0136	1.0137	1.1511	0.0178	1.0153	1.1442	0.0221	1.0182	1.1314	0.0299	
	1.0071	1.1550	0.0078	1.0113	1.1413	0.0160	1.0138	1.1330	0.0210	1.0163	1.1246	0.0261	1.0210	1.1093	0.0353	
	1.0067	1.1101	0.0287	1.0105	1.1032	0.0423	1.0128	1.0989	0.0506	1.0151	1.0947	0.0589	1.0193	1.0869	0.0742	
	1.0068	1.1027	0.0284	1.0108	1.0967	0.0400	1.0133	1.0931	0.0470	1.0158	1.0895	0.0540	1.0203	1.0828	0.0670	

Tаблица 8-3начение коэффициентов c_1 , c_2 , b, при приведении транспортного средства к расчетной нагрузке $100~{
m kH}$

	Значение коэффициентов c_1 , c_2 , b при различном показателе ровности IRI, м/км															
Тип трансп. средства		IRI = 1.8			IRI=3.0			IRI=3.75			IRI=4.5			IRI=6.0		
	c_1	c_2	b	c_1	c_2	b	c_1	c_2	b	c_1	c_2	b	c_1	c_2	b	
	1.0072	1.4526	0.0029	1.0104	1.4459	0.0036	1.0123	1.4418	0.0040	1.0142	1.4377	0.0044	1.0105	1.4539	0.0076	
	1.0066	1.2623	0.0137	1.0108	1.2557	0.0161	1.0133	1.2516	0.0175	1.0158	1.2476	0.0189	1.0169	1.2317	0.0305	
	1.0056	1.2742	0.0057	1.0100	1.2675	0.0066	1.0126	1.2635	0.0071	1.0153	1.2594	0.0077	1.0141	1.2507	0.0128	
	1.0114	1.1911	0.0078	1.0151	1.1833	0.0109	1.0173	1.1786	0.0127	1.0196	1.1738	0.0146	1.0192	1.1618	0.0251	
	1.0067	1.1692	0.0109	1.0115	1.1512	0.0254	1.0145	1.1402	0.0343	1.0174	1.1293	0.0432	1.0214	1.1112	0.0580	
	1.0077	1.1365	0.0309	1.0125	1.1301	0.0361	1.0154	1.1262	0.0393	1.0183	1.1224	0.0425	1.0180	1.1093	0.0854	
	1.0059	1.1140	0.0445	1.0115	1.1039	0.0607	1.0150	1.0978	0.0705	1.0184	1.0917	0.0804	1.0195	1.0754	0.1521	
	1.0092	1.1677	0.0131	1.0119	1.1567	0.0260	1.0135	1.1501	0.0338	1.0151	1.1434	0.0417	1.0109	1.1303	0.1042	
	1.0076	1.1561	0.0134	1.0116	1.1422	0.0288	1.0141	1.1337	0.0382	1.0165	1.1251	0.0476	1.0152	1.1003	0.1298	
	1.0067	1.1104	0.0525	1.0105	1.1034	0.0777	1.0128	1.0992	0.0930	1.0151	1.0949	0.1084	1.0160	1.0782	0.2214	
	1.0067	1.1024	0.0536	1.0108	1.0965	0.0748	1.0133	1.0929	0.0877	1.0157	1.0893	0.1006	1.0171	1.0682	0.2415	

После того, как вычислен расчетный ресурс дорожной конструкции $(\sum N_p)$ необходимо по формуле 1. определить какое суммарное количество приложений расчетной нагрузки к точке на поверхности покрытия конструкция дорожной одежды испытала/испытает за интересующий нас срок эксплуатации (в данном случае 8 лет).

На текущем этапе эксплуатации дорожной конструкции остаточный ресурс определяется по формуле 5:

$$\sum_{\text{N}_{\text{OCT}}} N_{\text{oct}} = \sum_{\text{t=1}}^{t_{\text{CJ}}} N_{\text{p}} - \sum_{\text{t=1}}^{t_{\phi}} N_{\text{p}}$$
 (5)

где, \sum Nocт – остаточный ресурс дорожной конструкции, млн. расч. авт.;

 $\sum_{t=1}^{t_{cл}} N_p$ — суммарное расчетное число приложения расчетной нагрузки к расчетной точке на поверхности конструкции за срок службы tcл, млн. расч. авт.;

 $\sum_{t=1}^{t_{\varphi}} N_p$ — фактическое суммарное расчетное число приложения расчетной нагрузки к расчетной точке на поверхности конструкции за период tф, млн. расч. авт.;

tcл – расчетный срок службы.

Последовательность проведения расчета остаточного ресурса дорожных конструкций на текущем этапе эксплуатации с учётом заданных скоростных режимов движения и степени загрузки автотранспортных средств, а так же различных показателей ровности дорожного покрытия

1. Вычисляем расчетный ресурс дорожной конструкции

- 1.1. Предварительно задаём основные характеристики транспортного потока:
 - а. скорость движения транспортных средств 90 км/ч;
 - b. процентное содержание пустых, груженных и перегруженных автомобилей в транспортном потоке 30,60,10% соответственно.

- 1.2. Массы транспортных средств приняты в соответствии со значениями, полученными в результате статистической обработки данных, полученных с постов весового контроля.
- 1.3. Задаем требуемую ровность покрытия проезжей части, предполагая, что в течении всего срока эксплуатации автомобильной дороги ровность покрытия по международному индексу IRI не опустится ниже 1.6 м/км.
- 1.4. Для каждого типа грузовых транспортных средств (кроме легких и средних грузовых) определяем коэффициент приведения транспортных средств к расчетной нагрузке $S_{m\ cym}$ с учетом скорости движения, массы транспортного средства и ровности покрытия проезжей части по таблице 9.

Таблица 9 — Суммарные коэффициенты приведения транспортных средств к расчетной нагрузке 115 кH.

Вид транспортного средства	Sm сум (пуст)	Sm сум (груж)	Sm сум (перегр)					
1.Легковой автомобиль	0.0015							
2.Грузовые автомобили:								
2.1.Легкие (грузоподъёмность 1-2т)		0.005						
2.2.Средние (грузоподъёмность 2-5т)	0.002	0.067	0.356					
2.3.Тяжелые (грузоподъёмность 5-8т):								
2.3.1	0.003	0.716	1.597					
2.3.2	0.032	1.495	3.334					
2.3.3	0.076	2.011	4.485					
3. Автопоезда с полуприцепом:		•						
3.1	0.001	0.968	2.159					
3.2	0.024	1.879	4.192					
3.3	0.073	2.329	5.195					
3.4	0.040	2.523	5.627					
3.5	0.043	2.436	5.434					
4. Автопоезда с прицепом:								
4.1	0.004	0.828	1.848					

4.2	0.070	2.496	5.567
4.3	0.040	1.653	3.688
4.4	0.075	3.623	8.080
5. Автобусы			
5.1 (микроавтобусы)	0.0027		
5.2	0.051	0.314	0.700

- 1.5. Вычисляем суммарное расчетное число приложений расчетной нагрузки к точке на поверхности конструкции автотранспортных средств с различной степенью загрузки ($\sum N_p^{\text{пуст}}$; $\sum N_p^{\text{груж}}$; $\sum N_p^{\text{перегр}}$) по формуле 2.
- 1.6. Вычислим расчетный ресурс дорожной конструкции по формуле 1.

$$\sum_{v} N_{v} = 16\,424\,324$$

1.7. Вычислим суммарное количество приложений расчетной нагрузки, которое испытает дорожная конструкция за 8 лет (формула 1).

$$\sum N_p = 6237836$$

Следовательно, за 8 лет эксплуатации автомобильная дорога исчерпает 38% своего ресурса.

2. Рассчитаем остаточный ресурс дорожной конструкции, при фактических условиях эксплуатации автомобильной дороги

В течении срока службы автомобильной дороги некоторые условия её эксплуатации (параметры транспортного потока, ровность покрытия проезжей части) могут измениться и существенно отличаться от проектных, что может повлиять на изменение в большую или меньшую сторону остаточного ресурса дорожной конструкции.

Для расчета остаточного ресурса с учетом фактических условий эксплуатации повторяем пункты 1.1-1.7 данного приложения.

С целью наглядно показать степень изменения остаточного ресурса при изменении условий эксплуатации автомобильной дороги рассмотрим два возможных варианта: **первый вариант**, ежегодный прирост интенсивности движения составляет 1%, изменение ровности покрытия проезжей части представлено в таблице 10; **второй вариант**, ежегодный прирост интенсивности движения составляет 6%, изменение ровности покрытия проезжей части представлено в таблице 11.

Таблица 10 – Изменение ровности покрытия автомобильной дороги в процессе эксплуатации (лучший вариант)

Год эксплуатации	Значение показателя ровности IRI, м/км
1	1,1
2	1,2
3	1,3
4	1,4
5	1,5
6	1,6
7	1,7
8	1,8

Таблица 11 – Изменение ровности покрытия автомобильной дороги в процессе эксплуатации (худший вариант)

Год эксплуатации	Значение показателя ровности IRI, м/км
1	1,10
2	1,30
3	1,50
4	1,70
5	1,90
6	2,10
7	2,30
8	2,50

Для каждого типа грузовых транспортных средств (кроме легких и средних грузовых) вычисляем коэффициент приведения транспортных средств к расчетной нагрузке $S_{m\ cym}$ с учетом скорости движения, массы транспортного средства и ровности покрытия проезжей части по формуле 4, c_1, c_2, b определяются по таблице 7.

Например: для двухосного тяжелого грузового автомобиля с грузоподъёмностью 8-т:

 $c_1=1.0123$; $c_2=1.4438$; b=0.0021

$$S_{m \, ext{сум}} = 0.0021 \cdot \left(1.0123^{90}\right) \cdot \left(1.4438^{4.6}\right) = 0.03$$
 (без груза) $S_{m \, ext{сум}} = 0.0021 \cdot \left(1.0123^{90}\right) \cdot \left(1.4438^{14.7}\right) = 1,40$ (с перегрузом) $S_{m \, ext{сум}} = 0.0021 \cdot \left(1.0123^{90}\right) \cdot \left(1.4438^{18.4}\right) = 5,43$

Вычислим суммарное количество приложений расчетной нагрузки, которое испытает дорожная конструкция за 8 лет (формула 1) по первому варианту.

$$\sum_{p} N_{p} = 5 \ 123 \ 667$$

Сравним расчетный ресурс дорожной конструкции $\sum N_p = 16\,424\,324$ с суммарным количеством приложения расчетной нагрузки, испытываемым дорожной конструкцией за 8 лет $\sum N_p = 5\,123\,667$, получается, что за 8 лет эксплуатации автомобильная дорога исчерпает 31% своего ресурса.

Вычислим суммарное количество приложений расчетной нагрузки, которое испытает дорожная конструкция за 8 лет (формула 1) по второму варианту.

$$\sum_{p} N_{p} = 8\,803\,100$$

Сравним расчетный ресурс дорожной конструкции $\sum N_p = 16\,424\,324$ с суммарным количеством приложения расчетной нагрузки, испытываемым дорожной конструкцией за 8 лет $\sum N_p = 8\,803\,100$, получается, что за 8 лет эксплуатации автомобильная дорога исчерпает 54% своего ресурса.